This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

SYNTHESIS OF CARBOCYCLIC PHOSPHONONUCLEOSIDES

B. Legeret^a; Z. Sarakauskaite^a; F. Pradaux^a; Y. Saito^a; S. Tumkevicius^b; L. A. Agrofoglio^a ^a I.C.O.A. associé CNRS, Orléans, France ^b Dept of Organic Chemistry, Faculty of Chemistry, University of Vilnius, Lithuania

Online publication date: 31 March 2001

To cite this Article Legeret, B., Sarakauskaite, Z., Pradaux, F., Saito, Y., Tumkevicius, S. and Agrofoglio, L. A.(2001) 'SYNTHESIS OF CARBOCYCLIC PHOSPHONONUCLEOSIDES', Nucleosides, Nucleotides and Nucleic Acids, 20: 4, 661 — 664

To link to this Article: DOI: 10.1081/NCN-100002345 URL: http://dx.doi.org/10.1081/NCN-100002345

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF CARBOCYCLIC PHOSPHONONUCLEOSIDES

B. Legeret, ¹ Z. Sarakauskaite, ^{1,2} F. Pradaux, ¹ Y. Saito, ¹ S. Tumkevicius, ² and L. A. Agrofoglio ^{1,*}

¹I.C.O.A. associé CNRS, Faculté des Sciences, 45100 Orléans, France

²Dept of Organic Chemistry, Faculty of Chemistry,

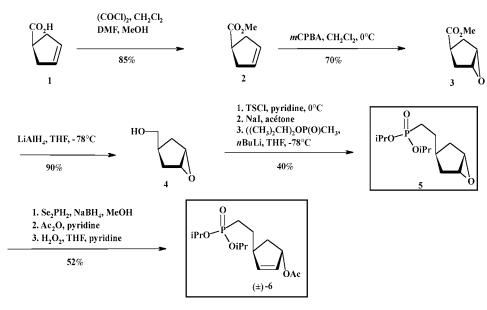
University of Vilnius, Lithuania

ABSTRACT

Syntheses of carbocyclic analogs of phosphononucleosides are described by two different methods (introduction of the heterocycle under Mitsunobu conditions or build-up of the base around a cyclopentylamine moiety).

In case of several viruses, to be active, the nucleosides must be mono-, di- and triphosphorylated by nucleotidases or kinases enzymes. The first phosphorylation is known to be selective and limiting. To circumvent this step, pronucleotide (1,2) or nucleotide analogs, i.e. compounds in which a phosphonate group is mimicking the phosphate monoester, have been designed (3). Phosphonate analogs have also the advantage over monophosphates in that P-C bonds are not cleaved by the phosphatases which dephosphorylate monophosphates. Thus, in part of our drug discovery group, we have been investigating the syntheses of carbocyclic nucleosides (4–6), and we will report herein some carbocyclic analogues of phosphononucleosides (Fig. 1).

Considering different synthetic approaches towards the targeted compounds, we developed both convergent methods allowing the connection of the intact heterocycle moiety under Mitsunobu conditions (7), and linear methods in which the heterocycle moiety is built up around a functionalized cyclopentylamine. The


^{*}Corresponding author.

662 LEGERET ET AL.

Figure 1.

requested cyclopentenyl phosphonates have been obtained from cyclopent-3-enoic acid according to Scheme 1.

The stereochemical control of the process requires that the oxirane intermediate $\bf 3$ be preferentially formed on the less hindered face of the cyclopentylamine ring to direct the nucleophilic attack of the heterocycle or its precursors. Thus the epoxidation of ester $\bf 2$ by MCPBA afforded a 70/30 mixture of stereoisomeric epoxides easily separated by chromatography. The only *trans*-epoxide $\bf 3$ was used for the rest of the synthesis. The key synthon $\bf 5$ (8) was then converted (Scheme 2) into the allylic alcohol (\pm)- $\bf 7$ by the "selenylation-oxidation" method. Thymine

Scheme 1.

REPRINTS

Scheme 2.

Scheme 3.

analogue (\pm) -9 was successfully obtained by Mitsunobu reaction of (\pm) -7 with N^3 -benzoylthymine as described into Scheme 2. Compound (\pm) -7 could be also obtained by deacylation of (\pm) -6.

The linear approach as depicted in Scheme 3 was used to reach other carbocyclic phosphononucleosides with an exocyclic aminopyrimidine moiety.

Thus, the *meso*-epoxide **5** after treatment with NaN₃ was converted into (\pm) -**10**, which was reduced by hydrogenation to provide the cyclopentylamine (\pm) -**11**. The amine (\pm) -**11** was coupled with 4,6-dichloro-5-nitropyrimidine to afford after deprotection the phosphononucleoside (\pm) -**12** (10). Reaction of the aromatic chlorine with methanolic ammonia gave (\pm) -**13a**, while hydrogenation of (\pm) -**13a** afforded (\pm) -**13b** as a new exocyclic amino carbocyclic analogue of a phosphononucleoside.

In summary, several syntheses of these hitherto unknown carbocyclic phosphononucleosides have been accomplished (11). Biological evaluations of those compounds for antiviral activity are in progress.

664 LEGERET ET AL.

ACKNOWLEDGMENT

This work was supported by a research grant from the Foundation pour la Recherche Médicale (SIDACTION).

REFERENCES

- 1. Meier, C. Synlett 1998, 233–242 (review).
- 2. Naesens, L.; Snoeck, R.; Andrei, G.; Balzarini, J.; Neyts, J.; De Clercq, E. *Antiviral Chem. Chemother.* **1997**, *8*, 1–23 (review).
- 3. Périgaud, C.; Girardet, J.-L.; Gosselin, G.; Imbach, J.-L. in *Antiviral Drug Design*; De Clercq, E., Ed.; JAI Press: London, **1996**; Vol. 2, pp 147–172.
- 4. Agrofoglio, L. A.; Challand, S. R. in *≪Acyclic, Carbocyclic and L-Nucleosides*≫; Kluwer Academic Publishers: Dordrecht, Boston, London, **1998**, 385 pp.
- 5. Agrofoglio, L. A.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.; Earl, R. A.; Guedj, R. *Tetrahedron* **1994**, *50*(36), 10611–10670 (review).
- Agrofoglio, L. A.; Condom, R.; Guedj, R.; Challand, S. R.; Selway, J. Tetrahedron Lett. 1993, 34(39), 6271–6272.
- 7. Mitsunobu, O. *Synthesis* **1981**, 1–28.
- 8. Physico-chemical data for 2-(6-Oxabicyclo[3.1.0]hex-3-yl)ethyl phosphonic acid diisopropyl ester, 5: 1 H-NMR (CDCl₃) δ 4.71–4.63 (m, 2H, CH(CH₃)₂), 3.45 (s, 2H, H₁, H₅), 2.17 (dd, 2H, J = 6.9 Hz , J = 13.5 Hz H_{4a}, H_{2a}), 1.73–1.41 (m, 5H, PCH₂, PCH₂CH₂, H₃), 1.30 (d, 12H, J = 6.2 Hz, 2 × (CH₃)₂CH), 1.28–1.24 (m, 2H, H_{4b}, H_{2b}); NMR- 31 P (CDCl₃) δ 51.7 (s, 1P).
- 9. Physico-chemical data for (\pm) -2"-[1'-(1-thyminyl)cyclopent-2'-enyl]ethyl phosphonic acid diisopropyl ester, (\pm) -9: ¹H-NMR (CDCl₃) δ 8.49 (s, 1H, NH), 7.05 (s, 1H, H₆), 6.17 (m, 1H, H_{2'}), 5.76–5.71 (m, 2H, H_{3'}, H_{1'}), 4.80–4.70 (m, 2H, 2 × CH(CH₃)₂), 2.87–2.80 (m, 1H, H_{4'}), 1.98 (s, 3H, CH₃), 1.84–1.75 (m, 5H, P<u>CH₂</u>, PCH₂<u>CH₂</u>, H_{5'a}), 1.38 (d, 12H, J = 6.2 Hz, $2 \times$ (CH₃)₂CH), 1.38–1.35 (m, 1H, H_{5'b}); MS m/z = 385.50 (M + 1).
- 10. Physico-chemical data for (\pm) -2"-(2'-hydroxy-1'-N-(4-chloro-5-nitro-6-aminopyrimidine)-cyclopentyl)ethylphosphonic acid, (\pm) -12: 1 H-NMR (CDCl₃) δ 8.1 (s, 1H, H₂), 7.9 (s, 1H, NH), 4.4 (m, 1H, H_{1'}), 4.2 (m, 1H, H_{2'}), 2.4 (m, 1H, H_{5'b}), 2.3 (m, 1H, H_{4'}), 1.9 (m, 1H, H_{3'b}), 1.7 (m, 3H, H_{3'a}, H_{1"}, H_{2"}), 1.3 (m, 1H, H_{5a'}); MS (ion spray) m/z 366 (M+), 368 (M+2).
- 11. All synthesized products have been fully characterized by ¹H, ¹³C NMR and MS.

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Order now!

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081NCN100002345